People

Jobs

News

TIBS-R V3.0: Leading Stimulator Performance for Artifact-free EEG and Closed-Loop Protocols

Aug 27, 2024

TIBS-R V3.0 has been released! The device is certified for electrical safety according to IEC 60601-1:2005 + A1:2012 + A2:2020 and has several important enhancements:

  • Improved performance in the presence of large variations in electrode contact quality
  • Markedly reduced second-order intermodulation products (IM2); when paired with the IT’IS electroencephalography (EEG) filter solution, IM2 products are reduced to well below the EEG noise floor (<30nV)
  • New possibilities for EEG-based closed-loop stimulation protocols
  • New wireless charging option that extends stimulator run time, e.g., for overnight experiments

This update will be made available immediately to all researchers in our Early Adopter Program.

The Company

TI Solutions AG was founded in December 2019 in Zurich, Switzerland, by the creators of the TI concept in collaboration with Z43 to specifically foster TI research.

Our mission is to:

  • advance TI research by developing high-quality, flexible stimulation devices and innovative planning tools to identify the most effective stimulation methods and therapeutic endpoints for neurodegenerative disease treatment
  • support the translation of this research into impactful medical therapies, while developing certified devices and tools that ensure safe, effective, and cost-efficient treatment solutions

TI Devices

The TIBS-R neurostimulation devices support direct current (DC), alternating current and TI stimulation, up to 8 synchronous stimulation channels, a wide carrier-frequency range (DC – 100 kHz), sinusoidal to arbitrary modulation, synchronization with external triggers, compatibility with electroencephalogram recordings, and more.

TI Solutions Early Adopter Program (EAP)

TI Solutions aims to facilitate research into TI-based applications. We are pulling together a select group of researchers as part of our Early Adopter Program who are interested in applying our investigational TI stimulation device as part of their research studies.

Device Description

Continuously updated information about our TI devices can be found here.

TI Planning Tool

The TI planning tool is provided by the IT’IS Foundation for the optimization of electrode placements on human and animal subjects, currents and modulations. The tools are user-friendly and present results in a powerful visualization. Users can also define different optimization criteria. Thanks to a state-of-the-art cloud-based modeling platform, simulations of complex and realistic setups can be performed without special software or hardware. Version 2.2 supports two channel configurations, and phase modulation and multi-channel target optimization. Version 3.0 will add personalized modeling, allowing modeling of any anatomy and any electrode shape and placement.

Services

Our team will provide all engineering services required for the optimal application of the developed TI devices and planning tools, such as troubleshooting support, replacement of defective devices, and repairs. We are happy to contribute to drafting research proposals and to perform simulations for the TI planning if required. We are also interested in discussing and, if feasible, incorporating additional features into our devices and software tools.

The Science

TI stimulation is a non-invasive technique that uses scalp electrodes to apply interfering electrical high-frequency currents to reach structures deep inside the brain. While the applied frequencies of the electric fields themselves are too high to induce neural firing, the frequency of the envelop can drive neural activity. This new concept holds great promise for both research and clinics as it may open up new experimental opportunities and may be used for selective deep brain stimulation to treat certain disorders without the necessity of surgically implanting electrodes within certain brain areas, which is still common practice today. 

Grossman N et al. Noninvasive deep brain stimulation via temporally interfering electric fields.  Cell. 2017;169(6):1029‐1041.e16. doi:10.1016/j.cell.2017.05.024

References

A selection of recent publications on TI stimulation can be found here.

The People

Ed Boyden

Prof. Ed Boyden is Y. Eva Tan Professor in Neurotechnology at MIT in Boston, USA, Professor of Biological Engineering and Brain and Cognitive Sciences at MIT’s McGovern Institute for Brain Research, and an Investigator at the Howard Hughes Medical Institute. He leads the Synthetic Neurobiology Group, which develops new biotechnological tools for probing, analyzing, and engineering brain circuits. He and Nir Grossman are inventors of the TI stimulation technology patent.

Nir Grossmann

Prof. Nir Grossman is a Lecturer at Imperial College London, a founding fellow of the UK Dementia Research Institute, and is affiliated with Imperial’s Centre for Bioinspired Technology and Centre for Neurotechnology, MIT’s Media Lab, and the McGovern Institute for Brain Research. His research focuses on the development of new tools and principles for neuromodulatory interventions for neurodegenerative diseases and other brain disorders. He and Ed Boyden are the inventors of the TI stimulation technology patent.

Henrich Kisker

Henrich Kisker holds various positions as internal and external adviser on corporate, legal, and financial matters for a number of international companies. Since 2005, he has also been a member of the advisory board (“Bankrat”) of one of the largest Swiss banks, the Zürcher Kantonalbank, which has total assets of 167 billion Swiss francs. Until his retirement in 2018, he was the head of the tax and treasury functions of Senior PLC, an international manufacturing group listed on the London Stock Exchange.

Niels Kuster

Prof. Niels Kuster is the founder and Director of the Foundation for Research on Information Technologies in Society (IT’IS Foundation) in Zurich, Switzerland, and Associate Professor of the Department of Information Technology and Electrical Engineering at ETH Zurich. His research covers many aspects of electromagnetics and computational life sciences, including TI. He is a long-time member of several standardization bodies and serves as a consultant on exposure safety assessment for governmental agencies around the globe.

Esra Neufeld

Dr. Esra Neufeld is Associate Director of the Foundation for Research on Information Technologies in Society (IT’IS Foundation) in Zurich, Switzerland, and Head of the Computational Life Science group at IT’IS. He leads several research teams on advanced multiphysics simulation in medicine, treatment-planning software, medical image analysis and anatomical model generation, applied simulations, particularly in the field of bio-electromagnetics and electromagnetic-tissue interactions (heating, neurostimulation, cell proliferation, etc.) as well as in silico clinical trials and standardization.

Alvaro Pascual-Leone

Prof. Alvaro Pascual-Leone is Professor of Neurology at Harvard Medical School and a Senior Scientist at the Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife, Boston, USA. He is a pioneer in the use of noninvasive brain stimulation and its application for the study of brain behavior relations and the development of diagnostic and therapeutic interventions in neuropsychiatry. His contributions range from technology development to basic neurobiological insights gained from animal studies and modeling approaches to human proof-of-principle and multicenter clinical trials.